POSITIVE SOLUTIONS FOR A SECOND ORDER EXTENDED FISHER-KOLMOGOROV'S EQUATION

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

Multiple positive solutions for second order impulsive differential equation ∗

We investigate the existence of positive solutions to a three-point boundary value problem of second order impulsive differential equation. Our analysis rely on the Avery-Peterson fixed point theorem in a cone. An example is given to illustrate our result.

متن کامل

uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

in this paper we consider the second order nonlinear neutral delay partial difference equation $delta_ndelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$under suitable conditions, by making use of the banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

Heteroclinic solutions of a second-order difference equation related to the Fisher-Kolmogorov's equation

We study the existence of heteroclinic solutions for semilinear secondorder difference equations related to the Fisher-Kolmogorov’s equation. The proof of the presented results are based on monotonicity and continuity arguments.

متن کامل

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Apllied Mathematics

سال: 2021

ISSN: 1311-1728,1314-8060

DOI: 10.12732/ijam.v33i6.1